Distinct OGT-Binding Sites Promote HCF-1 Cleavage

نویسندگان

  • Tanja Bhuiyan
  • Patrice Waridel
  • Vaibhav Kapuria
  • Vincent Zoete
  • Winship Herr
  • Matthew Bogyo
چکیده

Human HCF-1 (also referred to as HCFC-1) is a transcriptional co-regulator that undergoes a complex maturation process involving extensive O-GlcNAcylation and site-specific proteolysis. HCF-1 proteolysis results in two active, noncovalently associated HCF-1N and HCF-1C subunits that regulate distinct phases of the cell-division cycle. HCF-1 O-GlcNAcylation and site-specific proteolysis are both catalyzed by O-GlcNAc transferase (OGT), which thus displays an unusual dual enzymatic activity. OGT cleaves HCF-1 at six highly conserved 26 amino acid repeat sequences called HCF-1PRO repeats. Here we characterize the substrate requirements for OGT cleavage of HCF-1. We show that the HCF-1PRO-repeat cleavage signal possesses particular OGT-binding properties. The glutamate residue at the cleavage site that is intimately involved in the cleavage reaction specifically inhibits association with OGT and its bound cofactor UDP-GlcNAc. Further, we identify a novel OGT-binding sequence nearby the first HCF-1PRO-repeat cleavage signal that enhances cleavage. These results demonstrate that distinct OGT-binding sites in HCF-1 promote proteolysis, and provide novel insights into the mechanism of this unusual protease activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crosstalk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway.

Host Cell Factor 1 (HCF-1) plays critical roles in regulating gene expression in a plethora of physiological processes. HCF-1 is first synthesized as a precursor, and subsequently specifically proteolytically cleaved within a large middle region termed the proteolytic processing domain (PPD). Although the underlying mechanism remains enigmatic, proteolysis of HCF-1 regulates its transcriptional...

متن کامل

O-GlcNAc Transferase Catalyzes Site-Specific Proteolysis of HCF-1

The human epigenetic cell-cycle regulator HCF-1 undergoes an unusual proteolytic maturation process resulting in stably associated HCF-1(N) and HCF-1(C) subunits that regulate different aspects of the cell cycle. Proteolysis occurs at six centrally located HCF-1(PRO)-repeat sequences and is important for activation of HCF-1(C)-subunit functions in M phase progression. We show here that the HCF-...

متن کامل

O-linked N-acetylglucosamine transferase promotes cervical cancer tumorigenesis through human papillomaviruses E6 and E7 oncogenes

O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) increases O-GlcNAc modification (O-GlcNAcylation), and transcriptional co-regulator host cell factor 1 (HCF-1) is one of OGT targets. High-risk Human Papillomaviruses (HPVs) encode E6 and E7 oncoproteins, which promote cervical cancer. Here, we tested whether O-GlcNAc modification of HCF-1 affects HPV E6 and E7 expressions and tumorigene...

متن کامل

How the glycosyltransferase OGT catalyzes amide bond cleavage

The essential human enzyme O-linked β-N-acetylglucosamine transferase (OGT), known for modulating the functions of nuclear and cytoplasmic proteins through serine and threonine glycosylation, was unexpectedly implicated in the proteolytic maturation of the cell cycle regulator host cell factor-1 (HCF-1). Here we show that HCF-1 cleavage occurs via glycosylation of a glutamate side chain followe...

متن کامل

Proteolysis of HCF-1 by Ser/Thr glycosylation-incompetent O-GlcNAc transferase:UDP-GlcNAc complexes.

In complex with the cosubstrate UDP-N-acetylglucosamine (UDP-GlcNAc),O-linked-GlcNAc transferase (OGT) catalyzes Ser/ThrO-GlcNAcylation of many cellular proteins and proteolysis of the transcriptional coregulator HCF-1. Such a dual glycosyltransferase-protease activity, which occurs in the same active site, is unprecedented and integrates both reversible and irreversible forms of protein post-t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015